Aerosol optical thicknesses over North Africa: 1. Development of a product for model validation using Ozone Monitoring Instrument, Multiangle Imaging Spectroradiometer, and Aerosol Robotic Network

نویسندگان

  • Sundar A. Christopher
  • Pawan Gupta
  • James Haywood
  • Glenn Greed
چکیده

[1] Daily aerosol optical thickness (AOT) at 0.55 mm over the desert regions is needed as a source of validation for numerical models such as the United Kingdom’s Numerical Weather Prediction Unified Model. We examined the relationship between monthly mean ultraviolet (UV) absorbing aerosol index (AI) from the Ozone Monitoring Instrument (OMI) that is available on a daily basis with the Multiangle Imaging Spectroradiometer (MISR) AOT that is available once every nine days over North Africa. We then developed spatiotemporal AI-AOT relationships on a monthly mean basis that can be used to convert the daily AI to AOT during months when dust concentrations are high (June–August) to compare against months when a mixture of dust and biomass burning aerosols are present (January–March). We further examined the AOT data from the ground to validate our methods and results. While previous studies have examined the Total Ozone Mapping Spectrometer AI with limited ground-based Sun photometer data, our study extends this to the OMI over 2 years (2005–2006) and for the entire north African region (20 W–40 E and 0–30 N). Our results confirm that the MISR is an excellent sensor for retrieving AOT over desert regions. Comparisons between MISR and Aerosol Robotic Network (AERONET) data over multiple locations indicate that the linear correlation coefficient is 0.89. The AI-AOT relationship is region specific and is robust over locations where AI and AOT are high during June–August especially when the predominant aerosol is dust. This relationship breaks down closer to the equator when aerosol loading is small especially when biomass-burning aerosols are prevalent during January–March. Our analysis indicates that the estimated AOT (EAOT) from the AI-AOT relationship is within 28% of the MISR AOT for optical depths between 0.2 and 2.0 with large uncertainties (75%) for smaller optical depths (<0.2). The EAOT for January–March 2006 is well correlated with the AERONET AOT with a linear correlation coefficient of 0.83 with a relative mean error of 23%. The methods and products developed here can be used as a first proxy for validating model-derived AOT that is shown by Greed et al. (2008).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of spectral analysis techniques in the intercomparison of aerosol data: Part III. Using combined PCA to compare spatiotemporal variability of MODIS, MISR, and OMI aerosol optical depth

Satellite measurements of global aerosol properties are very useful in constraining aerosol parameterization in climate models. The reliability of different data sets in representing global and regional aerosol variability becomes an essential question. In this study, we present the results of a comparison using combined principal component analysis (CPCA), applied to monthly mean, mapped (Leve...

متن کامل

Assessment of OMI near-UV aerosol optical depth over land

This is the first comprehensive assessment of the aerosol optical depth (AOD) product retrieved from the near-UV observations by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. The OMI-retrieved AOD by the UV aerosol algorithm (OMAERUV version 1.4.2) was evaluated using collocated Aerosol Robotic Network (AERONET) level 2.0 direct Sun AOD measurements over 8 years (2005–2012)....

متن کامل

Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...

متن کامل

Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...

متن کامل

Validation of Multiangle Imaging Spectroradiometer (MISR) aerosol optical thickness measurements using Aerosol Robotic Network (AERONET) observations over the contiguous United States

[1] Aerosol optical thickness (AOT) data retrieved by the Multiangle Imaging Spectroradiometer (MISR) in 2001 were compared with AOT measurements from 16 Aerosol Robotic Network (AERONET) sites over the contiguous United States. Overall, MISR and AERONET AOTs were strongly correlated (r = 0.73). Regression analysis showed that the root mean square error (RMSE) of MISR AOT was 0.05. The overall ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008